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Unit 6- Microprocessor Design 
 

INTRODUCTION 
▪ Abstraction Layers in Computer Systems Design: Transistor Circuits → Logic Gates → Register Transfers → Microarchitecture 

→ Instruction Set Architecture → Operating Systems → Programming Languages → Algorithm 

▪ Typical devices used to implement digital systems (they can be implemented with a hardware-description language): 
✓ ASICs, FPGAs: For dedicated hardware implementation. It requires highly specialized design. 
✓ General-Purpose Microprocessors, Microcontrollers (e.g. embedded C). It requires software development. 
✓ Specialized uPs: PDSPs (programmable digital signal processor). It requires specialized software development. 

▪ ASICs or uPs? Performance vs. flexibility. ASIC design requires high development cost, not reprogrammable. 
▪ FPGAs: Intermediate option between ASICs and uP. Not commonly used for processor implementation. Operating frequencies 

can be relatively low compared to uP, but can achieve higher performance for specific tasks. They are reconfigurable.  
▪ PSoCs (Programmable System-on-Chip). They integrate reconfigurable logic (like an FPGA), a hard-wired microprocessor, 

and peripherals. With proper software/hardware co-design, high performance solutions can be attained. 
 

COMPUTER HARDWARE ORGANIZATION  

▪ General-purpose Digital Computer: Usually called ‘Computer’. It is a digital system that can follow a stored sequence 

of instructions, called a program, that operates on data. 

✓ The user can specify and modify the program and/or the data according to their specific needs. 
✓ As a result of this flexibility, general-purpose digital computers can perform a variety of information-processing tasks, 

ranging over a very wide spectrum of applications. 
✓ The digital computer is thus a highly general and very flexible digital system. 

 
▪ Computer Specification: It is the description of its appearance to a programmer at the lowest level: the Instruction Set 

Architecture (ISA). From the ISA, a high-level description of the hardware to implement the computer (i.e., the computer 
architecture) is formulated. 

 
▪ Computer: Processor + I/O + Memory 

✓ Memory: It stores programs as well as input, output, and intermediate data. 
✓ Central Processing Unit (CPU): It sequentially executes the instructions in memory (the program) by performing 

arithmetic and other data-processing operations. 
✓ I/O Units: A digital computer can accommodate many different input and output devices, e.g.: DVD drives, USB flash 

drives, printers, LCDs, keyboards. 
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CENTRAL PROCESSING UNIT (CPU) 
▪ Also called Processor. It consists of a Datapath and Control Unit. 

✓ Datapath:  
 Register File (set of Registers): They hold data and memory address values during the execution of an instruction. 
 Arithmetic Logic Unit (ALU): Shared operation unit that performs arithmetic (e.g., addition, subtraction, division) 

and bit-wise logic (e.g., AND, OR, operations).  
✓ Control Unit: It controls operations performed on the Datapath and other components (e.g. memory). It interprets the 

instructions and executes them. Instructions are read from memory. To execute a particular instruction, this unit asserts 
specific signals at certain times to control the registers, ALU, memories and ancillary logic. A Control Unit usually includes: 
 Program Counter (PC): During program execution, it provides the address of the instruction being executed. It can 

increase the address as well as change the sequence of operations using decisions based on status information. 
 Instruction Decoder (ID): It reads the instructions and generates control signals to the datapath and other 

components. It is usually implemented as a combinational circuit (single-cycle computers) or as a large Finite State 
Machine (FSM) with ancillary logic (multi-cycle computers). 

 

▪ Complex CPU: Multiple control units and datapaths. 
 
Harvard vs. Von Neumann 

Harvard: 
 Instruction memory and Data memory 
 Operands usually placed in registers in the CPU: register-to-register architecture 

Von 
Neumann: 

 One memory for both instruction and data 
 Operands placed in an accumulator register or in the instruction memory: register-memory architecture 

 

GENERIC CPU MODEL 
▪ The figure depicts a generic model for a CPU with typical components. The Control Unit includes the Program Counter (PC) 

and the Instruction Decoder (ID). The Datapath includes a Register File and an ALU. Instruction and Data Memories are 
usually included. A specific CPU might not have all the components or connections, or it might include more components. 

▪ Program Counter (PC): It has a branch control mechanism to increment the PC, assign an arbitrary value (jump/ branch), 
or to apply an address offset. The jump/branch address and offset are latched from the instruction itself or from the datapath. 
In the figure, the instruction register (IR) goes to the offset address, while the Datapath generates the jump address. But it 
can be the other way around, or the PC might not include an offset or jump address. 

▪ Instruction Decoder (ID): It generates control bits (orange-colored signals) for the Datapath, PC, and Data Memory. 
▪ Instruction Memory (IM): It generates the instructions to be executed. The output is called the Instruction Register (IR). 
▪ This CPU requires an extra circuitry that: i) enables the execution of PC (E_PC, sclr_PC), ii) controls Instruction Memory (IM) 

loading, and iii) enables the Instruction Decoder.  

▪ Model Parameters: H: Memory address word size. K: Address Offset Size. N: Data word size. NI: Instruction Word Size. M: 

Bits to address the Register File (2M registers). K ≤ H ≤ N. 
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MEMORY OVERVIEW 
 

RANDOM ACCESS MEMORY (RAM) 
▪ Access to words from a desired location take the same time regardless of the location, hence the name RAM. 
▪ Number of words: 2𝑘 𝑛-bit words (2𝑘 × 𝑛 memory). Depth = 𝑚 = 2𝑘, width = 𝑛. 

▪ I/O description: 
✓ DI: 𝑛-bit input data. 

✓ DO: 𝑛-bit output data. 

✓ AD: 𝑘-bit address. The addresses range from 0 to 2𝑘 − 1. 

✓ we: write enable. Also called R/W (sometimes this signal is active-low: 𝑅/𝑊̅) 

✓ en: enable. Other terms are CS (chip select) or E. 

 
▪ Operation: 

en we Action 

0 X no read or write 

1 0 read word from address pointed by AD 

1 1 write on address pointed by AD 

✓ In simple memory designs, we often tie en=1, so that we always read or write. Here, we is often renamed as wr_rd. 

 
MEMORY DECODING 
▪ We can group memory blocks to build a 

larger memory. For a memory with 2𝑘 𝑛-

bit words, if an individual memory block 
has 2ℎ words, we then need 2𝑘−ℎ = 2𝑝 

memory blocks. 
▪ Conceptual implementation: 

✓ Data write: a decoder can be used to 
select the proper block to write on. 

✓ Data read: a multiplexor (or 3-state 
buffer) can be used to select which 
memory block output to read from.  

▪ The 𝑘-bit address of the memory can be 

divided into 𝑝 + ℎ bits. 

✓ 𝑝: bits required to select the individual 

memory blocks (to write or read). 
✓ ℎ: bits required to select the words 

from an individual memory block. 
 
 
▪ Example: 256K8 memory out of 4 648 memory blocks. The 18-bit address of the 256K8 memory is divided into 2 bits 

(to select the memory block to read/write data) and 16 bits (to select an individual address from a memory block). 
✓ Note that for every bit we increase in the address, the number of words doubles. 
✓ We can also concatenate the data inputs (and data outputs) of several memory blocks to create a memory with an 

increased word size.  
 Example: 256Kx16 memory (address, we, and en inputs are shared amont all the memory bocks). 
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RAM IMPLEMENTATION 
 

Register-based:  
▪ These designs can be described at RTL (on 

FPGAs or ASICs). 
▪ Write operation: A given input word is stored on 

the desired address (register) right after the 
clock edge. 
✓ There are different approaches for the 

behavior of the output data when writing. 
Simplest one: set all outputs to 0’s. 

▪ Read operation: Data is available as soon as the 
address of the desired word is fed.  

 

▪ The figure shows a memory with n=4, k=3. A 

timing diagram is shown, where we tie en=1. 

✓ Sometimes an output register is added (this 
delays output for 1 clock cycle). 

✓ In many applications, it is common to set 
en=1. Here, we controls reading/writing. 

 

▪ VHDL parametric code: RAM_emul.vhd. 

(it has wr_rd = we; en: not used) 

 
▪ This straightforward implementation is not used 

in real-world applications (unless the memory 
requirements are very small): flip flops are very 
expensive resources, also for every extra 
address bit the decoder and mux sizes grow exponentially. 

 
 
 
 
 
 
 
 
 
 
 
 
Static RAM (SRAM) 
▪ Data is stored in latches. Data valid as long as power is applied. Compared to other memory technology, SRAMs are easier 

to use, they feature shorter read/write cycles, and require no refresh. 
 

▪ One-bit implementation: the figure shows a SRAM cell logic model, a SRAM cell implementation with pass transistors and 
NOT gates, and a SRAM cell implementation where the NOT gates are implemented with CMOS technology. 
✓ FPGAs use SRAM-based technology to store the bitstream. BlockRAMs are also based on SRAM technology. 

 
✓ RAM Cell logic model functionality: 

sel Latch action 𝐶 𝐶̅ 

0 𝑄 ← 𝑄 0 0 
1 𝑄 ← 𝐵 𝑄 𝑄̅ 

 Note that if we force 𝐵 = 𝐵̅ = 0, we also have: 𝑄 ← 𝑄. 
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▪ SRAM implementation: We first implement a ‘bit slice’, 
i.e., a column of the SRAM. 
✓ RAM bit slice: 𝑚 = 2𝑘 

 
 
 
 
 
 
 
 
 
 

 Write logic: 
CS R/W 𝐵 𝐵̅ Comments 

0 X 0 0 DO=0 (invalid) 

1 0 0 0 Data kept on SRAM cells 

1 1 𝐷𝐼 𝐷𝐼̅̅ ̅ Can write on an SRAM cell 

 

 Read logic: 
 If sel=0 for all cells, then 𝐶 = 𝐶̅ = 0 for all cells and  

the SR latch keeps its value. 
 If CS=0, then DO=0 (invalid output). 

 If CS=1, only one cell should have sel=1. Here, the 

SR Latch stores the cell value (𝐶) and DO=𝐶.  

 

✓ 2𝑘 × 𝑛 words SRAM: It can be implemented with a group of SRAM bit slices. For example: 16x4 SRAM (n=4, k=4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 3-state output buffers: They are included to optimize implementation of larger SRAMs. If we want to build a larger 
SRAM out of smaller SRAMs (see memory decoding), we then do not need to use a large multiplexor: 
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Dynamic RAM (DRAM) 
▪ Data is stored as electric charges on capacitors. The storage of information is only temporary: data tends to discharge over 

time, and it must be periodically recharged by refreshing the DRAM cells (this is a refresh cycle). 
▪ DRAMs provide high storage capacity at low cost, but they are slower than SRAMs. Also, the design is quite more challenging. 
▪ The figure depicts a DRAM cell, a 16x1 DRAM cell array arranged as a 2D array (4x4), and a block diagram of a DRAM.  

✓ DRAM cell: If sel=0, the transistor is open, and the capacitor charge remains roughly fixed. If sel=1, the transistor is 

closed, and charge can flow into and out of the capacitor from the bit line. 
 Writing (from bitline to capacitor): the value of the bit line (𝐵) is stored on the capacitor (by charging or discharging). 

 Reading (from capacitor to bitline): the electric charge in the capacitor is applied onto the bit line. 
 The charge in the capacitors are low-power signals. Here, we need sense amplifiers, whose role is to sense these 

signals and amplify them so that data can be interpreted properly by logic outside the memory. 
 A read operation depletes the charge in a cell, destroying the data. To restore it, a sense amplifier must 

immediately write it back in the cell by applying a voltage to it, recharging the capacitor (this is called refresh). 
✓ 16x1 DRAM cell array: Instead of building a 16x1 DRAM Bit Slice, a more efficient approach is to arrange the 16 cells 

into a 4x4 array. This separates the address into a row address and a column address (requires row/column decoders). 

 This row/column address separation technique can be applied to a 2𝑘 × 1 memory, dividing into a 2𝑘 2⁄ × 2𝑘 2⁄  array. 

 We can arrange a group of these 4x4 arrays (called banks) in parallel in order to build a 16n DRAM cell array. 

✓ DRAM block diagram: It depicts typical components found in a DRAM: row and column decoders, sense amplifiers, and 

memory array (collection of n 2D arrays of size 2𝑘 2⁄ × 2𝑘 2⁄ , this implements a 2𝑘 × 𝑛 DRAM). 

 Even with no reading, data in the capacitor discharges over time. So, we need to periodically (e.g. every 64 ms) 
execute a refresh cycle (refresh all DRAM cells). During a refresh cycle, no reads or writes can occur. This needs 
additional logic to generate the addresses of all the rows of the DRAM cells. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

▪ Synchronous DRAM (SDRAM): The external interface is clocked (DRAMs have asynchronous interfaces). 
▪ Double Data Rate SDRAM (DDR SDRAM): Like SDRAM, but the data output is provided on both the positive and negative 

clock edges. Voltage: 2.5 v, frequency: 133 MHz. * DDR2: 1.8v, freq: 266, 333, 400 MHz. * DDR3: 1.5v, freq: 800 MHz. 
 

LIFO (LAST-IN, FIRST-OUT) 
▪ The structure resembles that of a Stack. SP: Pointer to the Top of the Stack (TSP). 

O
p

e
ra

ti
o

n
 * At power-up: SP  DEPTH (Stack is empty) 

If en = ’1’:  If we = ’1’: SP  SP-1 ST[SP]  DI 

  If we = ‘0’: DO  ST[SP] SP  SP+1 

else: DO  ST[SP]   

Flags: empty = 1 if SP=DEPTH, else 0 full = 1 if SP=0, else 0 

 
 
 
 
 
 
 

FIFO (FIRST-IN, FIRST-OUT) 
▪ Structure that is useful to implement queues and to buffer large amounts of data. 
▪ Synchronous FIFO: data written/read at the same clock rate. 
▪ Asynchronous FIFO: write and read clocks can be different. This is an ASIC design 

(not an RTL) that is useful to pass data between different clock domains.  
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SINGLE-CYCLE HARDWIRED CONTROL – VBC (VERY BASIC COMPUTER) 

▪ This is a simple microprocessor where instructions are processed in one clock cycle. 
▪ Only one instruction memory. No data memory. Data can be loaded onto the ALU on one clock cycle.  
▪ Instruction Memory: Implemented as an array of registers. When reading, output appears as soon as address is ready. 
▪ Instruction Decoder: the ‘stop_ID’ external signal makes sure that the ID outputs are ‘0’ so that nothing gets updated. 
▪ Note how this detailed figure fits into the Generic CPU model. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
▪ Register File: R0 (register 0, 4 bits), R1 (register 1, 4 bits). 

▪ ALU: 4-bit operations. Thus, we have up to 8 different operations. 
▪ Program Counter (PC): To execute the instructions sequentially (one after the other), we must provide the memory 

address of the instruction to be executed. In a computer, this address comes from a register called PC. 
▪ Instruction Decoder: Converts instructions into control bits. This is a combinational circuit. 
▪ Instruction Memory: Stores up to 16 8-bit instructions 

▪ Other Registers: OUT (output register, 4 bits), PC (program counter, 4 bits), IR (instruction register, 8 bits). 

 

INSTRUCTION SET 
▪ Instructions are specified by the Instruction Register (IR). 

 
 
 
 
 
 
 

DR=0  R0 is the Destination register, DR=1  R1 is the Destination register. 

SR=0  R0 is the Source register, SR=1  R1 is the Source register. 
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OPCODE (IR[7..5]) Instruction Operation Description 
000 MOV DR, SR DR  SR 

001 LOADI DR, DATA DR  DATA, DATA = IR[3..0] 

010 ADD DR, SR DR  DR + SR 

011 ADDI DR, DATA DR  DR + DATA, DATA = IR[3..0] 

100 SR0 DR, SR DR  0&SR[3..1] 

101 IN DR DR  IN 

110 OUT DR OUT  DR 

111 JNZ DR, ADDRESS 

PC  PC + 1 if DR=0 

PC  IR[3..0] if DR0 
* ADDRESS = IR[3..0] 

 
▪ opcode: IR[7..5]: This is the operation code of an instruction. This group of bits specifies an operation (such as add, 

subtract, shift, complement in the ALU). If it has m bits, there can be up to 2m distinct instructions. 
▪ Immediate Data: IR[3..0]. This is called an immediate operand since it is immediately available in the instruction. 

 

INSTRUCTION DECODER 
▪ This component is in charge of issuing control signals for the proper execution of instructions. The inputs to this circuit are 

the Instruction Register (IR) and the Z flag. The outputs are all the control signals: M1, M2, M3, M4, M5, M6, L_R0, L_R1, 
L_OP. Note that the Function Select (FS) output to the ALU is directly generated by IR[7..5]. 

▪ Also, if stop_ID=1, the following signals must be set to ‘0’: register enables in the Datapath (L_OP, L_R0, L_R1), and the PC 

control signal M6. This is useful to pause execution of a program (PC and Datapath are not updated). 
▪ This is a combinational circuit. The I/O relationship depends on how each instruction is defined. 
 

✓ IN DR: DR grabs the contents from the input 
 

 

 

 

 

IN R0: 1010XXXX  M1  1, L_R0  1, M6  0 

IN R1: 1011XXXX  M1  1, L_R1  1, M6  0 

 

✓ OUT DR: Places the contents of DR on the output register 
 

 

 

 

 

OUT R0: 1100XXXX  M2  0, L_OP  1, M6  0 

OUT R1: 1101XXXX  M2  1, L_OP  1, M6  0 

 

✓ LOADI DR, DATA: Copies immediate DATA onto DR 
 

 

 

 

 
 

LOADI R0, DATA: 0010d3d2d1d0  M5  1, M3  1, M1  0, L_R0  1, M6  0 

LOADI R1, DATA: 0011d3d2d1d0  M5  1, M3  1, M1  0, L_R1  1, M6  0 

 

✓ ADD DR, SR: Adds SR and DR, and copies the result onto DR 
 

 

 

 

 

 

ADD R0,R0: 01000XXX  M40, M50, M20, M31, M10, L_R01, M60 

ADD R0,R1: 01001XXX  M40, M50, M21, M31, M10, L_R01, M60 

ADD R1,R0: 01010XXX  M40, M50, M21, M31, M10, L_R11, M60 

ADD R1,R1: 01011XXX  M41, M50, M21, M31, M10, L_R11, M60 

1 0 1 DR X X X X

0  1

1 1 0 DR X X X X

0  1

0 0 1 DR d3 d2 d1 d0

0  1

0 1 0 DR SR X X X

0  1 0  1
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✓ ADDI DR, DATA: Adds immediate DATA and DR, and copies the result onto DR 
 

 

 

 

 

 

ADDI R0, DATA: 0110d3d2d1d0  M2  0, M5  1, M3  1, M1  0, L_R0  1, M6  0 

ADDI R1, DATA: 0111d3d2d1d0  M2  1, M5  1, M3  1, M1  0, L_R1  1, M6  0 

 

✓ MOV DR, SR: Copies the contents of SR onto DR 
 

 

 

 

 

 

MOV R0, R0: 00000XXX  M2  0, M3  0, M1  0, L_R0  1, M6  0 

MOV R1, R1: 00011XXX  M2  1, M3  0, M1  0, L_R1  1, M6  0 

MOV R0, R1: 00001XXX  M2  1, M3  0, M1  0, L_R0  1, M6  0 

MOV R1, R0: 00010XXX  M2  0, M3  0, M1  0, L_R1  1, M6  0 

"MOV R0,R0", "MOV R1,R1"(can be used as NOP instruction) 

 

✓ SR0 DR, SR: Shifts (to the right) the contents of SR and places the result onto DR 
 

 

 

 

 

SR0 R0,R0: 10000XXX  M40, M50, M20, M31, M10, L_R01, M60 

SR0 R0,R1: 10001XXX  M40, M50, M21, M31, M10, L_R01, M60 

SR0 R1,R0: 10010XXX  M40, M50, M21, M31, M10, L_R11, M60 

SR0 R1,R1: 10011XXX  M41, M50, M21, M31, M10, L_R11, M60 

 

✓ JNZ DR, ADDRESS: Jumps to a certain instruction if the DR contents  0. This is how computers implement loops. 
 

 

 

 

 

JNZ R0, ADDRESS: 1110a3a2a1a0  M2  0, M6  0 if z = 1, M6  1 if z = 0 

JNZ R1, ADDRESS: 1111a3a2a1a0  M2  1, M6  0 if z = 1, M6  1 if z = 0 

* M6  0  PC  PC + 1; M6  1  PC  IR[3..0] 

 
ARITHMETIC LOGIC UNIT 
▪ With the 3-bit input selector FS, the operations performed here are very simple. For 4-bit inputs A and B as well as 4-bit 

output F, we have that: F=A when FS=000,001; F=A+B when FS=010,011; F=sr(A) when FS=100; and F=B when FS=111. 
The output Z=1 if the result of F is all 0’s, except is FS=101, 110 (since these are the IN, OUT instructions). 

 
Example: 
▪ Write an assembly program for a counter from 1 to 5: 1, 2, 3, 4, 5, 1, 2, 3, …. The count must be shown on the output 

register (OUT). 
 

start: loadi R0,1 R0  1 

       out R0  OUT = 1 

       addi R0,1  R0  R0 + 1 = 2 

       out R0  OUT = 2 

       addi R0,1  R0  R0 + 1 = 3 

       out R0  OUT = 3 

       addi R0,1  R0  R0 + 1 = 4 

       out R0  OUT = 4 

       addi R0,1  R0  R0 + 1 = 5 

       out R0  OUT = 5 

       jnz R0, start  

0 1 1 DR d3 d2 d1 d0

0  1

1 0 0 DR SR X X X

0  1 0  1

0 0 0 DR SR X X X

0  1 0  1

1 1 1 DR a3 a2 a1 a0

0  1
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Example: 
▪ Write an assembly program for a counter from 2 to 13: 2,3,…, 13,2,3,… The count must be shown on the output register 

(OUT). Use labels to specify any address where your program jumps. Note that you can have only up to 16 instructions. 
▪ Provide the contents of the Instruction Memory. 

 
 * 2 to 13  4 to 15 

 

 

 

start: loadi R0,2  R0  2 

       loadi R1,4  R1  4 

loop:  out R0 → OUT: shows the count 

       addi R0,1  R0  R0+1 

       addi R1,1  R1  R1+1 

       jnz R1, loop 

       loadi R0,1  R0  1 

       jnz R0, start 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Microprocessor with Instruction Load Control for VBC Computer 
▪ For hardware testing, we need to include an Instruction Load Control circuitry. 

▪ The Instruction Load Control component can load instructions from a parallel input (one by one by asserting we_ex), or it 

can load a pre-defined set of instructions (by asserting L_in). 

▪ The figure below shows this VBC computer (CPU and Instruction Memory) along with a circuit that controls the loading of 
instructions. Here, we specify the VBC computer using blocks along with their proper connections 
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SINGLE-CYCLE HARDWIRED CONTROL – A SIMPLE COMPUTER 

▪ Here, we provide a more formal description of a microprocessor (using the generic CPU model); the figure includes the 

Instruction Load Control component. Parameters: NI=16, N=16, K=H=6, M=3 (8 Registers). The Function Select (FS) of the 

ALU has 4 bits. The Constant Input (CI) of the Datapath has N=16 bits, where CI[2..0]=IR[2..0], and CI[15..3]=”00...00” 

▪ Instruction Load Control: It does not control loading of data into Data Memory, though it could be updated to handle that. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PROGRAM COUNTER (PC) 
▪ This Generic Program Counter accepts a Jump Address (AO) and an Offset Address. 

▪ Note that PC and JA are unsigned H-bit addresses, while OFFSET can be an unsigned or signed K-bit value (K ≤ H). 

▪ In the figure, we use a signed offset. As a result, we zero extend PC and add it to the OFFSET resulting in H+1 bits. We 

only grab H bits and treat the result as unsigned. This means that if the result ends up being outside [0, 2H-1], we wraparound 

the result (e.g.: 111110 + 000011 = 1000001; 000001 - 000011 = 000001 + 111101 = 111110).  
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+
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DATAPATH 
▪ A generic datapath includes a Register File and an ALU (see previous figure). A Register File includes 2M registers, so we 

need M bits to address all of these registers. 

▪ Register File: The figure below depicts a Register File with M=2, resulting in 22=4 registers. Note how in this particular 

implementation, we use 2 data buses (Bus A and Bus B). Other implementations only use one Data Bus. We also include the 
connections to the ALU and to the Datapath inputs and outputs. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Arithmetic Logic Unit: The FS has 4 bits, and the following table lists all the possible operations. The input Data (A, B) 

and output data (Y) are represented as signed numbers. Here, the flags Z, V, N, C are generated. 
 

FS Operation Function Flag bits Unit 
0000 Y <= A Transfer A N, Z 

Arithmetic 

0001 Y <= A + 1 Increment A V, C, N, Z 
0010 Y <= A + B Add A and B with cin=0 V, C, N, Z 
0011 Y <= A + B + 1 Add A and B with cin=1 V, C, N, Z 

0100 Y <= A – B - 1 = A + not(B) Subtract B from A with bin=1 V, C, N, Z 

0101 Y <= A – B = A + not(B) + 1 Subtract B from A with bin=0 V, C, N, Z 

0110 Y <= A - 1 Decrement A V, C, N, Z 
0111 Y <= B Transfer B N, Z 
1000 Y <= A OR B Bit-wise OR N, Z 

Logic 

1001 Y <= A AND B Bit-wise AND N, Z 
1010 Y <= A XOR B Bit-wise XOR N, Z 
1011 Y <= not A Complement A N, Z 
1100 Y <= not B Complement B N, Z 
1101 Y <= sr B Right-shift B N, Z 
1110 Y <= sl B Left-shift B N, Z 
1111 Y <= 0 Transfer 0 None affected 

 
✓ In this particular implementation, the carry out (C) from a previous operation is not an input to the ALU. Instead, we 

have to use a specific instruction that adds the carry in (or borrow in) to an operation when desired. 
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INSTRUCTION MEMORY AND DATA MEMORY 
▪ Instruction Memory (IM): It stores up to 2H=64 16-bit instructions. The Instruction Load Control Component allows for 

instructions to be loaded externally. The PC controls which instruction is to appear on the Instruction Register (IR). 
▪ Data Memory (DM): It stores up to 2H=64 16-bit data values. It allows us to load and store data values during program 

execution. Here, the Data Memory (DM) can only be loaded via the Datapath, 
  

INSTRUCTION SET 
▪ Instruction: Collection of bits that instructs the compute to perform a specific operation. 

✓ Each instruction specifies: i) an operation the system is to perform, ii) the registers or memory words where the operands 
are to be found and the result is to be placed, and/or iii) which instruction to execute next. 

✓ Instructions are usually stored in memory (RAM or ROM). To execute the instructions sequentially, we need the address 
in memory of the instruction to be executed. The address comes from the Program Counter (PC).  

✓ Executing an instruction means activating the necessary sequence of microoperations in the datapath (e.g.: add, subtract, 
load, shift) and elsewhere required to perform the operation specified by the instruction. 
 Operation: This is specified by an instruction in memory. The Control Unites decodes the instruction in order to 

perform the required microoperations for the execution of the instruction.  
 Microoperation: This is specified by the control bits generated by the Instruction Decoder (ID). The execution of a 

computer operation often requires a sequence of microperations, rather than a single microoperation. 

 
▪ Instruction Set: Collection of instructions for a computer.  
▪ Instruction Set Architecture (ISA): A thorough description of the instruction set. Simple ISAs have three major components: 

storage resources (IM, DM, Register File), instruction formats, and instruction specifications. 
▪ Program: List of instructions that specifies the operations, the operands, and the sequence in which processing is to occur. 

It is where the user specifies the operations to be performed and their sequence. 
✓ The data processing performed by a computer can be altered by specifying a new program with different instructions or 

by specifying the same instructions with different data. 
✓ Instruction and Data can be stored in the same memory, in different memories, or they might appear to come from 

different memories. 
✓ The Control Unit reads an instruction from memory, decodes it, and executes the instruction by issuing a sequence of 

one or more microoperations (in single-cycle CPUs, we only perform microoperation per instruction). 
✓ The ability to execute a program from memory is the most important single property of a general-purpose computer. 

 
Instruction Format 
▪ The 16-bit instructions are generated by the Instruction Memory (IM) and written on the Instruction Register (IR). The 

instruction format might have different fields depending on the instruction type. Some microprocessors (like the VBC) only 
have one instruction type. In this particular implementation, we have 3 different instruction types: 
✓ Register: Opcode, 2 Source Registers (SA, SB), and a Destination Register (DR). 
✓ Immediate: Opcode, 1 Source Register (SA), a Destination Register (DR), and a 3-bit immediate operand (OP). 
✓ Jump and Branch: Opcode, Source Register, and 6-bit signed address offset: No register or memory contents are 

changed. Here, we only update the PC. 
▪ The OPCODE specifies the operation to be executed, which must use data stored in the registers or in memory. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
List of Instructions 
▪ Each instruction is denoted with a symbolic notation: the OPCODE is given a mnemonic, and the additional instruction fields 

are denoted by literals. This symbolic notation (called Assembly Instruction), that represents the operation executed by the 

instruction, is then converted to the binary representation by a program called Assembler. 

OPCODE DR SA SB

0215 35689

Destination Register
Source Register A
Source Register B

OPCODE DR SA OP

0215 35689

Operand

OPCODE AD (left) SA AD (right)

0215 35689

Address Offset

REGISTER:

IMMEDIATE:

JUMP AND BRANCH:
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▪ The table provides the instruction specification, i.e., a description of the operation performed by each instruction, including 
the status bits affected by the instruction. We include a limited number of instructions; the designer can always add more 

instructions that are supported by the Datapath and Control Unit. 
 

Instruction Opcode 
Mne-
monic 

Format Description PC 
Status 

Bits 

Move A 0000000 MOVA RD, RA R[DR]  R[SA] PC  PC+1 N, Z 

Increment 0000001 INC RD, RA R[DR]  R[SA] + 1 PC  PC+1 N, Z, C, V 

Add 0000010 ADD RD, RA, RB R[DR]  R[SA] + R[SB] PC  PC+1 N, Z, C, V 

Subtract 0000101 SUB RD, RA, RB R[DR]  R[SA] - R[SB] PC  PC+1 N, Z, C, V 

Decrement 0000110 DEC RD, RA R[DR]  R[SA] - 1 PC  PC+1 N, Z, C, V 

AND 0001000 AND RD, RA, RB R[DR]  R[SA]  R[SB] PC  PC+1 N, Z 

OR 0001001 OR RD, RA, RB R[DR]  R[SA]  R[SB] PC  PC+1 N, Z 

Exclusive OR 0001010 XOR RD, RA, RB R[DR]  R[SA]  R[SB] PC  PC+1 N, Z 

NOT 0001011 NOT RD, RA R[DR]  not (R[SA]) PC  PC+1 N, Z 

Move B 0001100 MOVB RD, RB R[DR]  R[SB] PC  PC+1 N, Z 

Shift Right 0001101 SHR RD, RB R[DR]  sr R[SB] PC  PC+1 N, Z 

Shift Left 0001110 SHL RD, RB R[DR]  sl R[SB] PC  PC+1 N, Z 

Load Immediate 1001100 LDI RD, OP R[DR]  OP PC  PC+1 N, Z 

Add Immediate 1000010 ADI RD, RA, OP R[DR]  R[SA] + OP PC  PC+1 N, Z 

Load 0010000 LD RD, RA R[DR]  M[R[SA]] PC  PC+1  

Store 0100000 ST RA, RB M[R[SA]]  R[SB] PC  PC+1  

Branch on Zero 1100000 BRZ RA, AD 
If R[SA] ≠ 0 

If R[SA] = 0 

PC  PC+1 

PC  PC+AD  
N, Z 

Brand on 
Negative 

1100001 BRN RA, AD 
If R[SA] ≥ 0 

If R[SA] < 0 

PC  PC+1 

PC  PC+AD 
N, Z 

Jump 1110000 JMP RA  PC  R[SA]  

 
▪ Other ISAs do not generate status bits when transfers on the Bus B (e.g. Move B) are occurring. 

▪ Note that the branch instructions generate N, Z because they require Bus A to be transferred in order to evaluate R[SA] 

which might assert N or Z. The Jump instruction does not affect the status bits. 

▪ Some considerations regarding the notation of the Instruction Description: 

✓ R[DR]: This refers to the register whose number is DR. Example: if DR=2 → R2. 

✓ M[R[SA]]: This refers to the memory address given by the value of the Register with number SA, e.g.: if SA=3 → M[R3]. 

▪ The following table shows an example with instructions in memory and a detailed description of them: 
 

Address Memory Contents Other Fields 
Assembly 

Instruction 
Operation Comments 

011001 0000101001010011 DR:1, SA:2, SB:3 SUB R1,R2,R3 R1  R2 – R3  

100011 0100000000100101 SA:4, SB:5 ST R4,R5 M[R4]  R5 DR unused 

101101 1000010010111110 DR:2, SA:7, OP:6 ADI R2,R7,6 R2  R7 + 6  

110111 1100000101110100 AD:-20, SA:6 BRZ R6,-20 If R[SA] = 0: PC  PC-20 -20=101100 

111110 0010000101010000 DR:5, SA:2 LD R5,R2 R5  M[R2] SB unused 

 
Example: 

▪ The following Assembly Program implements a counter from 2 to 13: 2,3,…, 13,2,3,… 
As we cannot use 11 as a 3-bit immediate operand, we first load 7 on R1 and then add 4. * 2 to 13  11 downto 0 

We use ‘---‘ to indicate the values that are unused. This means we can assign any value to them. 
 

Address Instruction Memory Assembly Program  

000000 1001100 011 --- 100 start: LDI R3,4 R3  4 
000001 1001100 000 --- 010        LDI R0,2 R0  2 

000010 1001100 001 --- 111        LDI R1,7 R1  7 

000011 1000010 001 001 100        ADI R1,R1,4 R1  R1+4 = 11 

000100 1000010 000 000 001 loop:  ADI R0,R0,1 R0  R0+1 

000101 0000110 001 001 ---        DEC R1,R1 R1  R1-1 

000110 1100000 111 001 011        BRZ R1,-5  

000111 1110000 --- 011 ---        JMP R3  

001000 0000000 000 000 000  R0  R0 (This is NOP operation) 

...    



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-4710/5710: Computer Hardware Design  Winter 2024 

 

 

15 Instructor: Daniel Llamocca 

Example: 
▪ The following Assembly Program stores numbers from 43 down to 29 in Data Memory (DM) on addresses 0 to 14. 

✓ After the instruction ST R4,R6 is executed, the R6 value appears on DM output. This is also true after the instruction BRZ 

R4,-7 is executed. This is because these instructions cause SA=4, which in turn makes AO=R4[5..0]. And R4[5..0] is 

the DM address where the value of R6 was stored. 

✓ At the instruction JMP R2, DM_DO shows the value at the address equal to R2 (SA=2 makes AO = R2[5..0]) 

 
Address Instruction Memory Assembly Program  

000000 1001100 010 --- 101 start: LDI R2,5 R2  5 

000001 1001100 110 --- 111        LDI R6,7 R6  7 

000010 1000010 110 110 111        ADI R6,R6, 7 R6  14 

000011 0000000 100 110 ---        MOVA R4,R6 R4  14 

000100 0000010 110 100 110        ADD R6,R4,R6 R6  28 

000101 0000001 110 110 --- loop:  INC R6,R6 R6  R6+1 

000110 0100000 --- 100 110        ST R4,R6 M[R4]  R6 

000111 1100000 111 100 001        BRZ R4,-7 If R4=0  PC  PC-7=0 

001000 0000110 100 100 ---        DEC R4,R4 R4  R4-1 

001001 1110000 --- 010 ---        JMP R2 PC  R2=5 

001010 0000000 000 000 000  (NOP operation) 

...    

 
INSTRUCTION DECODER 
▪ The inputs to this circuit are the Instruction Register (IR) and the V, C, N, Z flags. The outputs are all the control signals: 

DR, SA, SB, MB, MD, RW, MW, OS, JS, FS. In this implementation, the V, C, N, Z flags are only considered when branching. 

▪ Also, if stop_ID=1, the following signals must be set to ‘0’: register enables in the Datapath, the DM write enable, and the 

PC control signals OS and JS. This is useful to pause execution of a program (PC and Datapath are not updated). 
▪ This is a combinational circuit. The I/O relationship depends on how each instruction is defined. We provide the output 

signals for some instructions: 

 Instruction Register V C N Z RW DR SA SB MB MD FS MW OS JS 
MOVA R1,R2 0000000001010---     

1 
001 010 

--- - 0 0000 0 0 0 
MOVA R7,R0 0000000111000---     111 000 

MOVB R0,R3 0001100000---011     
1 

000 
--- 

011 
0 0 0111 0 0 0 

MOVB R6,R6 0001100110---110     110 110 

ADD R3,R2,R1 0000010011010001     
1 

011 010 001 
0 0 0010 0 0 0 

ADD R6,R0,R0 0000010110000000     110 000 000 

XOR R6,R1,R3 0001010110001011     
1 

110 001 011 
0 0 1010 0 0 0 

XOR R5,R4,R5 0001010101100101     101 100 101 

LDI R7,3 1001100111---011     
1 

111 
--- 

--- 
1 0 0111 0 0 0 

LDI R5,4 1001100101---100     101 --- 

ADI R0,R1,7 1000010000001111     
1 

000 001 --- 
1 0 0010 0 0 0 

ADI R2,R6,3 1000010010110011     010 110 --- 

LD R3,R7 0010000011111---     1 011 111 --- - 1 1111 0 0 0 

ST R1,R5 0100000---001101     0 --- 001 101 0 - 1111 1 0 0 

BRN R4,-5 1100001111100011 
  0  

0 --- 100 --- - - 0000 0 
0 0 

  1  1 0 

BRZ R3,12  1100000001011100 
   0 

0 --- 011 --- - - 0000 0 
0 0 

   1 1 0 

JMP R5 1110000---101---     0 --- 101 --- - - 1111 0 - 1 

 
▪ Branch instructions (BRN, BRZ): These instructions might affect the N and Z bits. Depending on how they affect these flag 

bits, we either branch or increase the value of the PC. 
▪ JMP, LD, ST: They use FS=1111 since in this case the V, C, N, Z flags are unaffected. 
 
Memory latency (IM, DM) 
▪ Memory implemented as an array of registers: Writing: Data takes 1 clock cycle to be written. Reading: Output data output 

appears as soon as address is ready (assuming no extra output register). 
▪ Memory implemented using BRAMs (assuming no extra output register): Writing: Data takes 1 clock cycle to be written. 

Reading: Output data takes 1 clock cycle to appear when address is presented (this is, address is read on the clock edge). 
▪ Other memory technologies (SRAMs, DDRRAMs, etc.): Writing/Reading: It might take many cycles for data to be written or 

to appear on the output. 
 
Single-Cycle Computer Shortcomings: 
▪ ALU operations that might require more than one cycle to execute (e.g. multiplication, division) cannot be executed, or they 

would require a large combinational delay. 
▪ Lower limit on the clock period based on a long worst-case delay path. Pipelining of the datapath is required to reduce the 

combinational delay between registers. This requires multiple-cycle control. 

...
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MULTI-CYCLE HARDWIRED CONTROL – PICOBLAZE
TM

 EMBEDDED MICROPROCESSOR 

▪ This is a commercial example of an 8-bit microprocessor developed by Xilinx® (datasheet). We present an adapted version 
here (hardware details were inferred based on the datasheet specification). This microprocessor design is meant to be 
instantiated into a large design that combines microprocessor and a digital design (in an FPGA). 

▪ The architecture depicts known components as well as new components and features (e.g.: Stack and Interrupt handling). 
▪ Each instruction takes 2 cycles to complete. 
 
▪ I/O interface: It consists of 5 signals. 
 

▪ Register File: 16 8-bit registers: s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA, sB, sC, sD, sE, sF. 

▪ ALU: 8-bits. It supports: 
✓ addition/subtraction with or without carry, bit-wise AND, OR, XOR 
✓ arithmetic compare and bit-wise test operations 
✓ shift and rotate operations 

▪ Flags: C, Z, IE. They are stored in flip flops. This is different from the previous examples. 

 
▪ Instruction Memory (IM): 1024 18-bit words. To optimize resources on an FPGA, this memory is implemented with BRAMs 

instead of registers. So, there is a one-cycle delay when reading data. 
✓ File for BRAM-based memory implementation (Artix-7 FPGA or 7-series PL): in_RAMgen.vhd) 

 
▪ Data Memory (DM): 64 8-bit words. It is called a ScratchPad memory. No delay: built out of decoder, register, and a MUX. 
 
▪ Program Counter (PC): 10-bit. It supports up to 1024 instructions (0x000 to 0x3FF). When the PC reaches 0x3FF, it rolls 

over to location 0x000. Computed jump instructions (like offset) are not supported, i.e., the Datapath does not control the 

PC. The Stack Data might or might not be incremented by 1 by the Program Counter. 
 
▪ Call/Return Stack: 31 locations (10-bit words). This allows the processor to handle nested subroutines. 

▪ Interrupts: 5 cycles to respond and start ISR. An interrupt enable flag (IE) is required. 
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CALL/RETURN STACK 
▪ This LIFO structure allows for the implementation of functions (including nested functions) as well as handling interrupts. 

▪ It stores up to 31 10-bit instruction addresses, enabling nested function calls up to 31 levels deep. Address: 5-bit pointer 

called Stack Pointer (SP) or Top of Stack (TOS). DI: input data. DO: output data. 

✓ At power-up: SP  31 (Stack is empty) 

✓ If en = ‘1’: 

 If we = ‘1’: SP  SP-1 ST[SP]  DI 

 If we = ‘0’: DO  ST[SP] SP  SP+1 

else: DO  ST[SP] 

✓ empty flag = 1 if SP = 31, else 0 full flag = 1 if SP = 0, else 0 
 

▪ SP is 5-bits wide as SP  [0,31]. Note that SP=31 means Stack is empty. Thus, there are only 31 addresses (0 to 30) where 

we can write data. ST[SP] denotes the contents of the Stack at address SP. 

▪ The figure shows different stages of a Stack. When data is written onto the Stack, we say that we push a value onto it. 
When data is read from the Stack, we say that we pop a value from it. 

 
 
 
 
 
 
 
 
 
 

▪ Writing on the Stack (SP  SP-1 followed by ST[SP]  DI): To minimize delays, these operations are usually executed at 

the same time. This is, the hardware precomputes SP-1, and it executes ST[SP-1]  DI and SP SP-1 simultaneously. 

▪ Reading from Stack: To minimize delays, there is usually no latency on DO, i.e., DO is already showing the Top of the Stack. 

▪ Subroutines Calls and Interrupt Event Handling: 
✓ Call to Subroutine (or to ISR): To save PC on Stack, the Instruction Decoder issues we=en=1,sclr=0. 

✓ Return from Subroutine (or from ISR): To restore PC from Stack, the Instruction Decoder issues we=0,en=1,sclr=0. 

▪ PicoBlaze: The Call/Return Stack is implemented as a cyclic buffer. When the Stack is Full, it overwrites the oldest value. 
 

PROGRAM COUNTER (PC) 
▪ This Program Counter accepts a Jump/Call Address (JA/CA) and an address from the Stack Pointer (ST). 

▪ The value of PC is determined by the control signals coming from the Instruction Decoder:  
✓ Subroutines: On a Call, the PC value (subroutine address) is given by JA/CA. On return, PC is loaded with ST+1.  

✓ Interrupts: PC gets the value 0x3FF. On return from interrupt, PC gets the value ST. 

▪ Due to the Instruction Memory (IM) one-cycle reading latency, a PC value must be available a cycle before its instruction 

appears on IR. Hence, a pBlaze instruction needs two cycles: we must wait a cycle after PC is updated to get an instruction 

from IM. PC lasts two cycles and it is updated by EPC (which is gated with the external E_PC signal) generated by the ID. 
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DATAPATH  
▪ This datapath (see previous figure) includes: i) a Register File with 24 8-bit registers, ii) an ALU that stores the flags C and 

Z on flip flops, and iii) an I/O interface. 
▪ The Datapath executes the microoperations required by an instruction based on the Control signals received from the 

Instruction Decoder (ID): 

✓ IE: We can set this flag bit to ‘1’ or ‘0’ at any time (using the signals SIE and LIE). 

✓ Interrupt Handling: On an interrupt event, the datapath stores Z an C onto buffers (ZI and CI) and clears IE. On return 
from interrupt, Z and C are restored (with the ZI and CI values), and IE can be set to either ‘1’ or ‘0’. 

✓ I/O interface: READ_STROBE and WRITE_STROBE come from the Instruction Decoder (RS and WS). 

 
▪ Register File: The architecture resembles that of the ‘Simple Computer’, except that there is only one output data bus. 
 
▪ Arithmetic Logic Unit (ALU): The FS has 5 bits, and the following table lists all the possible operations. The input Data 

(A, B) and output data (Y) can be thought of unsigned or signed integers. The exception is the subtraction operation where 
A and B are unsigned integers. Here, the flags Z, C are generated. 

 

FS Operation Function Flag bits  Unit 
00000 Y <= A Transfer A  No flags affected 

Arithmetic 

00001 Y <= A + B Add A and B C, Z  
00010 Y <= A + B + c Add A and B with C=cin C, Z 

00100 Y <= A – B Subtract B from A C, Z Unsigned subtraction, C 
represents borrow out 00101 Y <= A – B – c Subtract B from A with C=bin C, Z 

00111 Y <= A AND B Bit-wise AND C, Z C  0 

Logic 

01000 Y <= A AND B, tst Bit-wise AND, C different C, Z C  Y(7)Y(6)… Y(0) 
01001 Y <= A OR B Bit-wise OR C, Z 

C  0 
01010 Y <= A XOR B Bit-wise XOR C, Z 
01101 Y <= sL A 0 Left-shift A, din = 0 C, Z 

C  A(7) 
01110 Y <= sL A 1 Left-shift A, din = 1 C, Z 
01111 Y <= sL A A0 Left-shift A, din = A(0) C, Z 
10000 Y <= sL A c Left-shift A, din = C C, Z 
10001 Y <= sR A 0 Right-shift A, din = 0 C, Z 

C  A(0) 
10010 Y <= sR A 1 Right-shift A, din = 1 C, Z 
10011 Y <= sR A A7 Right-shift A, din = A(7) C, Z 
10100 Y <= sR A c Right-shift A, din = C C, Z 
10101 Y <= rL A Rotate left A C, Z C  A(7) 
10110 Y <= rR A Rotate right A C, Z C  A(0) 

 
✓ Here, the flags C and Z are stored in FFs each time the ALU executes an operation that changes C and Z. We can use 

the C flag in our operations. If we need to use C, we grab the value from the flip flop. 
✓ Note that unlike the ‘Simple Computer’ model, the C flag (carry out/borrow out) is an input to the ALU. We can then use 

a specific instruction that uses the value of this C flag from the flip flop. This allows us to implement, for example, multi-
precision addition and subtraction. 

✓ To handle interrupts, on an interrupt event we must store C and Z onto other ffs CI and ZI. On return from interrupt, we 
restore the values of C and Z from CI and ZI. The flip flops CI and ZI are part of this ALU. 

 
▪ All instructions require two cycles. However, note that in this architecture, some operations (e.g.: compute the result of two 

registers, compute the result of a register and a constant, reading/writing from external ports) do require 2 cycles to update 
the results. On the other hand, other instructions (e.g.: reading and writing from Data Memory, clearing IE) take only 1 

cycle. As a result, in this multi-cycle processor, we will see instructions that either require 1 or 2 microoperations to update 
registers, memory contents, and flags. 

▪ This multi-cycle microprocessor has a uniform number of cycles (2) per instructions. Note that other processor can take 
different number of cycles depending on the instruction, thereby making the control mechanism more complex.  
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INSTRUCTION SET 
▪ Note that it is common practice to specify (design) the Instruction Set first and then build the Datapath based on the 

instructions that need to be supported. 
 
Instruction format: 
▪ 18-bit instruction. The instruction format has different fields depending on the instruction type. PicoBlaze has 5 different 

instruction types. Note that the Destination Register is given by sX. 
✓ Register: Opcode, 2 Source Registers (sX, sY). 
✓ Immediate: Opcode, 1 Source Register (sX), 8-bit immediate operand (OP). 
✓ Single Register: Opcode, 1 Source Register (sX), 8-bit Opcode extension that further specifies the operation. 
✓ Jump and Call: Opcode, 2-bit Opcode extension, 10-bit immediate operand (JA/CA). 
✓ No Operand: Opcode, 12-bit Opcode extension. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
List of Instructions 
▪ The table provides the description of the operation performed by each instruction, as well as the status bits affected by the 

instruction. We provide the instructions in Assembly instruction format (mnemonic followed by literals). 

✓ Constants Operands: kk = OP[7..0], ss = OP[5..0] (OP[7..6]=00), aaa = JA/CA[9..0]. 

✓ Addition: sX, sY, kk can be treated as unsigned or signed integers. 

✓ Subtraction (unsigned): sX, sY, kk are treated as unsigned integers. C is interpreted as the borrow out (or borrow in). 

▪ Status Bits (C, Z): They are stored in FFs. An instruction read these bits when they are part of the operation. These bits can 

be updated after the instruction is executed. Z  1 if the result of the operation is 0. C  1 depending on the instruction. 

▪ IN_PORT, OUT_PORT: I/O port names. PORT_ID: identifier or port address for an associated I/O operation. 

▪ SP = TOS (top of the stack). ST[SP]: contents of the stack at address SP. 

▪ Interrupts: CI, ZI: extra buffers to store C and Z when an interrupt hits so that we can restore them after the interrupt 

event. IE: Interrupt enable flag (also considered a status bit). 

✓ On an interrupt event, the following occurs: CI  C, ZI Z, IE  0, ST[SP]  PC, SP  SP-1, PC  3FF. 

 
PROGRAMMING MODEL 
▪ From the point of view of the programmer, PicoBlaze contains: 

✓ 16 8-bit registers (s0-sF). 

✓ 64-byte Data Memory (DM). 

✓ 3 Status flags (C, Z, IE) 

✓ Program Counter (PC): This 10-bit pointer handles a 1024-word Instruction Memory (IM). 

✓ Stack Pointer (SP): this 5-bit pointer handles a 31-word Call/Return Stack. 
▪ After an instruction is executed, the contents of these components are altered explicitly or implicitly. 
  

OPCODE sX sY 0 0 0 0REGISTER:

OPCODE sX OPIMMEDIATE:

OPCODE sX Opcode ExtSINGLE REGISTER:
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Assembly Instruction opcode Description PC, SP Status bits 

LOAD sX, sY 000001 sX  sY PC  PC+1  

ADD sX, sY 011001 sX  sX + sY PC  PC+1 C, Z 

ADDCY sX, sY 011011 sX  sX + sY + C PC  PC+1 C, Z 

SUB sX, sY 011101 sX  sX - sY * unsigned subtraction PC  PC+1 C, Z 

SUBCY sX, sY 011111 sX  sX - sY - C * unsigned subtraction PC  PC+1 C, Z 

COMPARE sX, sY 010101 sX – sY, * unsigned subtraction, get C, Z PC  PC+1 C, Z 

AND sX, sY 001011 sX  sX  sY, C  0 PC  PC+1 C, Z 

OR sX, sY 001101 sX  sX  sY, C  0 PC  PC+1 C, Z 

XOR sX, sY 001111 sX  sX  sY, C  0 PC  PC+1 C, Z 

TEST sX, sY 010011 T = sX  sY,  C  T(7)T(6)...T(0) PC  PC+1 C, Z 

LOAD sX, kk 000000 sX  kk PC  PC+1  

ADD sX, kk 011000 sX  sX + kk PC  PC+1 C, Z 

ADDCY sX, kk 011010 sX  sX + sY + C PC  PC+1 C, Z 

SUB sX, kk 011100 sX  sX - kk * unsigned subtraction PC  PC+1 C, Z 

SUBCY sX, kk 011110 sX  sX – kk - C * unsigned subtraction PC  PC+1 C, Z 

COMPARE sX, kk 010100 sX – kk, * unsigned subtraction, get C, Z PC  PC+1 C, Z 

AND sX, kk 001010 sX  sX  kk, C  0 PC  PC+1 C, Z 

OR sX, kk 001100 sX  sX  kk, C  0 PC  PC+1 C, Z 

XOR sX, kk 001110 sX  sX  kk, C  0 PC  PC+1 C, Z 

TEST sX, kk 010010 T = sX  kk, C  T(7)T(6)...T(0) PC  PC+1 C, Z 

FETCH sX, (sY) 000111 sX  M[sY] * only sY[5..0] PC  PC+1  

STORE sX, (sY) 101111 M[sY]  sX * only sY[5..0] PC  PC+1  

INPUT sX, (sY) 000101 sX  IN_PORT, PORT_ID  sY PC  PC+1  

OUTPUT sX, (sY) 101101 OUT_PORT  sX, PORT_ID  sY PC  PC+1  

FETCH sX, ss 000110 sX  M[ss] * ss: 6 bits PC  PC+1  

STORE sX, ss 101110 M[ss]  sX * ss: 6 bits PC  PC+1  

INPUT sX, kk 000100 sX  IN_PORT, PORT_ID  kk PC  PC+1  

OUTPUT sX, kk 101100 OUT_PORT  sX,   PORT_ID  kk PC  PC+1  

RL sX 

100000 

sX  sX[6..0]&sX[7],  C  sX[7] PC  PC+1 C, Z 

RR sX sX  sX[0]&sX[7..1], C  sX[0] PC  PC+1 C, Z 

SL0 sX sX  sX[6..0]&’0’,  C  sX[7] PC  PC+1 C, Z 

SL1 sX sX  sX[6..0]&’1’,   C  sX[7] PC  PC+1 C, Z 

SLA sX sX  sX[6..0]&sX[0], C  sX[7] PC  PC+1 C, Z 

SLX sX sX  sX[6..0]&C,  C  sX[7] PC  PC+1 C, Z 

SR0 sX sX  ‘0’&sX[7..1],  C  sX[0] PC  PC+1 C, Z 

SR1 sX sX  ‘1’&sX[7..1],  C  sX[0] PC  PC+1 C, Z 

SRA sX sX  C&sX[7..1],  C  sX[0] PC  PC+1 C, Z 

SRX sX sX  sX[7]&sX[7..1], C  sX[0] PC  PC+1 C, Z 

CALL aaa 110000 Go to subroutine in address aaa 
SP  SP-1,  ST[SP]  PC 

PC  aaa 
 

CALL C, aaa 

110001 

Go to subroutine in address aaa if C=1 If Condition is met: 

         SP  SP-1,  ST[SP]  PC 

         PC  aaa 

else  PC  PC+1 

 

CALL NC, aaa Go to subroutine in address aaa if C=0  

CALL Z, aaa Go to subroutine in address aaa if Z=1  

CALL NZ, aaa Go to subroutine in address aaa if Z=0  

JUMP aaa 110100 Go to instruction in address aaa PC  aaa  

JUMP C, aaa 

110101 

Go to instruction in address aaa if C=1 If Condition is met: 

       PC  aaa 

else 

       PC  PC+1 

 

JUMP NC, aaa Go to instruction in address aaa if C=0  

JUMP Z, aaa  Go to instruction in address aaa if Z=1  

JUMP NZ, aaa Go to instruction in address aaa if Z=0  

RETURN 101010 Return from Subroutine PC  ST[SP]+1,  SP  SP+1  

RETURN C 

101011 

Return from Subroutine if C=1 If Condition is met: 

       PC  ST[SP]+1,  SP  SP+1 

else 

       PC  PC+1 

 

RETURN NC Return from Subroutine if C=0  

RETURN Z Return from Subroutine if Z=1  

RETURN NZ Return from Subroutine if Z=0  

DISABLE INTERRUPT 
111100 

IE  0 PC  PC+1 IE 

ENABLE INTERRUPT IE  1 PC  PC+1 IE 

RETURNI DISABLE 
111000 

Return from ISR, IE  0, C  CI, Z  ZI PC  ST[SP],  SP  SP+1 C, Z, IE 

RETURNI ENABLE Return from ISR, IE  1, C  CI, Z  ZI PC  ST[SP],  SP  SP+1 C, Z, IE 
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PROGRAM FLOW CONTROL 

▪ During program execution, the PC provides the address of the instruction being executed.  

✓ Instructions are usually executed sequentially. Hence for most instructions: PC  PC + 1. 

✓ Other instructions can alter program execution by loading a value onto PC: 

 Jump and branch instructions. We can go to any other instruction (via an absolute or relative address) in the program. 
Among other things, this allows for the implementation of loops. 

 Some processors include call and return instructions in order to handle subroutines and interrupt events. 
These instructions can be conditional or unconditional usually based on the ALU flags. 
 

▪ To alter program execution, the PicoBlaze processor includes a variety of instructions: 
✓ JUMP instructions: We can go to a specific instruction (specified by an absolute address).  
✓ To handle subroutines, it has CALL and RETURN instructions. 
✓ To handle interrupt events, it has RETURNI instructions.  
The JUMP and CALL instructions can be executed unconditionally or conditionally based on the C and Z flags. 

 
SUBROUTINES (PicoBlaze) 
▪ The CALL and RETURN instructions can implement a subroutine. Here, we need to interact with the Call/Return Stack. 
▪ A subroutine call is started by the CALL instruction. The process goes as follows: 

✓ The PC value is pushed on the Top of the Call/Return Stack: SP  SP-1, ST[SP]  PC 

✓ The CALL instruction jumps to the start of a subroutine (aaa address). PC  aaa 

✓ Instructions in the subroutine are then executed until a RETURN instruction is reached. At that moment, the stored PC 

value is popped from Top of the Call/Return Stack, incremented by 1, and loaded onto PC:  PC  ST[SP]+1, SP  SP+1 

✓ The program returns to the instruction immediately after the original CALL instruction. 

▪ Note that only PC is saved. The registers (s0-sF) and flags (C, Z) are not saved. Consider this when using subroutines. 

▪ The following examples use unconditional CALL and RETURN instructions. This can be easily modified to allow conditional 
CALL and RETURN instructions based on C and Z. 

 

✓ Example: A subroutine call: Program Flow and Stack state. 
 
 
 
 
 
 
 
 
 
 
 
 

✓ Example: Nested subroutine calls (2 levels): Program Flow and Stack state. Note how the Stack structure allows to save 
(and restore) the PC values in the right order. 
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INTERRUPTS 
▪ This is another mechanism to alter program execution. It is not initiated by an instruction, but rather by an external (to the 

microprocessor) request. When an interrupt event hits, the CPU stops normal program execution and perform some service 
(called Interrupt Service Routine) associated to the interrupt event, then returns to normal program execution. 

▪ PicoBlazeTM provides a single interrupt signal INT. We can enable or disable this signal via the IE (interrupt enable) flag: 

✓ To enable interrupts, we use the ENABLE INTERRUPT instruction (IE  1) 

✓ To disable interrupts, we use the DISABLE INTERRUPT instruction (IE  0) 

▪ Flow of an interrupt event: 
✓ By default, after reset (input signal to the PicoBlaze), the INT input is disabled. We need to enable interrupts first. 

✓ Once enabled, the INT signal must be asserted for at least two cycles in order to be recognized as an interrupt event. 

✓ An interrupt forces PicoBlaze to (implicitly) execute the CALL 3FF instruction immediately after completing the instruction 

being executed. The CALL 3FF instruction is a subroutine call to the last Instruction Memory (IM) location (0x3FF). 

During the implicit execution of the CALL 3FF instruction, the following occurs: 

 Further interrupts are disabled: IE  0 

 Flags Z and C are saved in buffers: CI  C, ZI Z 

 The PC value pointing to the instruction pre-empted by CALL 3FF is saved on the Stack: SP  SP-1, ST[SP]  PC 

 The PC value is updated: PC  3FF (updated at the same time its current value is placed onto the Stack).  

✓ At 0x3FF, there is typically a JUMP instruction to a subroutine called the Interrupt Service Routine (ISR). 

✓ The RETURNI DISABLE/ENABLE instruction ensures the end of ISR. When it is executed, the PC value as well as the 

Z and C values are restored. We can exit interrupt process with either enabling or disabling IE. When the interrupt 

process is finished, we need to execute the pre-empted instruction. 
 
▪ The figure shows the flow of an interrupt event for a program example. 

✓ Note that the PC value last two cycles and it is available one cycle before the instruction. This is because pBlaze uses an 

Instruction Memory that takes a cycle to generate output data (BRAM). Also, PC lasts for two clock cycles.  
✓ INT signal: If asserted, it is recognized on the first immediate clock edge. However, it must be asserted for at least two 

clock cycles so that a FSM (inside the Instruction Decoder) detects INT on two clock edges and then generates a one-

cycle pulse INT_P (during the first cycle of CALL 3FF). This pulse is used to save Z, C, and PC, as well as to update 

PC (PC  3FF) and clear IE. So, even though CALL 3FF does not appear on IR, it is implicitly executed via INT_P. 

✓ INT_ACK: This is a delayed version of INT_P. INT_ACK is asserted on the second cycle of the CALL 3FF instruction to 

indicate that the interrupt was recognized. INT_ACK can be used by an external interface to clear external interrupts. 

✓ The RETURNI instruction restores PC (PC  ST[SP], SP  SP+1). Unlike the RETURN instruction, the restored PC 

value from the Stack is not increased by 1. This is because the INT_P pulse saved the PC of the pre-empted instruction 

XOR s3,9 (0x008), which now needs to be executed. 

✓ Note that interrupt processing takes 5 cycles, this is from the moment the interrupt is recognized until the ISR starts. 
 
▪ The starting address of the ISR (known as the Interrupt Vector) is stored in a particular memory location. This location is 

known as the Vector Address. In the PicoBlaze, the Interrupt Vector is located at 0x3FF.  

▪ Unlike other processors, note that in PicoBlaze only PC and the Z, C flags are saved during an interrupt process.  
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▪ I/O Interface: pBlaze can read/write data from/to external ports via this interface that consists of 5 signals. 
✓ I/O Interface signals: 

 IN_PORT, OUT_PORT: 8-bit I/O ports connected to an external interface. 

 PORT_ID: 8-bit port identifier (or port address) for an associated I/O operation. It is valid for 2 clock cycles: this 

allows enough time for an interface to respond and for reading data from a synchronous RAM. 

 READ_STROBE, WRITE_STROBE: These signals are associated with the read and write operations. 

 
✓ INPUT operation:  

INPUT sX, kk PORT_ID  kk 
sX  IN_PORT 

INPUT sX, (sY) PORT_ID  sY 
 

 When the INPUT instruction appears on IR, PORT_ID is issued, and it is valid for two clock cycles. After those two 

cycles, sX captures data on IN_PORT. 

 IN_PORT: It is connected to external interface that allows selection (usually via a multiplexer) of up to 256 different 

input sources (selected by PORT_ID). 

 READ_STROBE: It is asserted on the second cycle of the two-cycle INPUT instruction cycle. It is used to indicate 

that pBlaze has acquired data (i.e., acknowledges receipt of data). 
 Example: INPUT s0,2. 

Note how PORT_ID appears right after the instruction is issued. Then the external circuit has two cycles to provide 

an input value (hence we can insert a register before IN_PORT to improve performance). Data is captured on the 

rising edge right after the second clock cycle of the instruction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

✓ OUTPUT operation: 
OUTPUT sX, kk PORT_ID  kk 

OUT_PORT  sX 
OUTPUT sX, (sY) PORT_ID  sY 

 

 When the OUTPUT instruction appears on IR, PORT_ID and OUT_PORT are issued and they are valid for two clock 

cycles. After those two cycles, that data is captured by the external interface. 

 OUT_PORT: It is connected to external interface where a decoder is commonly used (with PORT_ID) to route data 

onto a specific destination (up to 256 storage spaces, e.g.: registers). 

 WRITE_STROBE: It is asserted on the second cycle of the two-cycle OUTPUT instruction cycle. It indicates data is 

valid and ready for capture. The external interface can use it as an enable to capture data. 
 Example: OUTPUT s1,(s9) 

Note that PORT_ID and OUT_PORT appear immediately after the instruction. Then the external circuit has two 

cycles to capture the output (hence we can include a pipelining stage in the decoder to improve performance). Data 

is captured on the rising edge right after the second clock cycle of the instruction. 
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